Улучшение масштабируемости и производительности модели искусственного интеллекта: исследование многоголовой смеси экспертов

Легче сразу спросить 💭

AI снижает операционные расходы на 20–40% 📊 за 6 месяцев. А что бы вы сделали с этими деньгами?

Опишите задачу — обсудим, как это можно реализовать у вас.

ИИ автоматизирует 70% рутинных задач 🤖 за 3 месяца. Какие процессы в вашем бизнесе скинуть роботу?
Персонализированные AI-кампании увеличивают клиентскую базу на 30% 📈. Как это работает?
AI-аналитика сокращает ошибки в прогнозах на 50% 📉. Расскажите подробнее!
 Enhancing AI Model’s Scalability and Performance: A Study on Multi-Head Mixture-of-Experts

Большие модели, такие как большие языковые модели (LLM) и большие мультимодальные модели (LMM), показали свою эффективность в различных задачах. Однако увеличение размера модели снижает скорость вывода, что ограничивает ее практическую применимость. Разреженные смеси экспертов (SMoE) предлагают решение, но сталкиваются с проблемами, такими как низкая активация экспертов и ограниченные аналитические возможности.

Разреженные смеси экспертов (SMoE) увеличивают емкость модели, сохраняя при этом постоянный вычислительный спрос, что приводит к превосходной производительности. Многоголовая смесь экспертов (MH-MoE) использует механизм многоголовости для достижения более плотной активации экспертов без увеличения вычислительной сложности. Она разбивает токены на подтокены и направляет их к различным экспертам, что позволяет модели сосредотачиваться на различных пространствах представления внутри экспертов.

MH-MoE постоянно поддерживает более низкую перплексию по сравнению с базовыми моделями, что указывает на более эффективное обучение. Она также превосходит другие модели в различных задачах, демонстрируя свое превосходство в моделировании межъязыкового естественного языка и захвате разнообразной семантической и детальной информации визуальных данных. Предложенная MH-MoE предлагает простую реализацию этих функций и облегчает безшовную интеграцию с другими фреймворками SMoE, улучшая производительность с легкостью.

Список полезных ссылок:

AI Lab в Telegram @aiscrumbot – бесплатная консультация

Twitter – @itinaicom

Полезные ссылки:

Новости в сфере искусственного интеллекта