Новости о лучших ИИ решениях, новинках машинного обучения, компьютерного зрения, ИИ агентов и больших лингвистических моделей от редакции itinai.ru
Спроси — обсудим AI-подход к твоей задаче 📈
WEB-SHEPHERD: Модель Награды Процесса для Веб-Агентов Навигация по вебу включает в себя обучение машин взаимодействию с веб-сайтами для выполнения задач, таких как поиск информации, покупки или бронирование услуг. Разработка эффективных веб-агентов представляет собой сложную задачу из-за необходимости понимания структуры сайтов, интерпретации целей пользователей и принятия последовательных решений. Кроме того, агенты должны адаптироваться к динамичным веб-средам, […] ➡️➡️➡️
Введение в Dimple: Модель для Эффективной Генерации Текста Исследователи Национального университета Сингапура представили Dimple — первую дискретную диффузионную мультимодальную языковую модель (DMLLM), которая сочетает в себе визуальный кодировщик и языковую модель на основе дискретной диффузии. Эта модель решает проблемы нестабильности и производительности, присущие традиционным методам обучения. Преимущества Dimple Dimple предлагает несколько ключевых преимуществ: Параллельное декодирование […] ➡️➡️➡️
Неправильные ответы улучшают математическое мышление? Методы обучения с подкреплением, такие как обучение с человеческой обратной связью (RLHF), используются для улучшения выходных данных моделей в области обработки естественного языка (NLP). Один из вариантов, обучение с проверяемыми наградами (RLVR), расширяет этот подход, используя автоматические сигналы, такие как математическая корректность или синтаксические особенности, в качестве обратной связи. Это […] ➡️➡️➡️
Введение С развитием технологий искусственного интеллекта и машинного обучения, компании стремятся использовать эти инструменты для получения предсказательных аналитических данных. Однако многие организации сталкиваются с нехваткой внутренней экспертизы в области науки о данных. В этом контексте платформы DataRobot и H2O.ai становятся все более популярными, предлагая автоматизацию процессов моделирования. В данной статье мы сравним эти две платформы, […] ➡️➡️➡️
Сравнение WorkFusion и Automation Anywhere: Могут ли предобученные ИИ-боты заменить ручную настройку? В современном мире автоматизация процессов становится все более важной для повышения эффективности бизнеса. В этом контексте платформы Robotic Process Automation (RPA), такие как WorkFusion и Automation Anywhere, занимают центральное место. Обе компании предлагают свои уникальные решения, но в чем их основные различия? В […] ➡️➡️➡️
Создание интерактивного анализа транскриптов и PDF с помощью чат-бота Lyzr В этом руководстве мы представляем упрощенный подход к извлечению, обработке и анализу транскриптов видео на YouTube с использованием Lyzr — мощного фреймворка на базе ИИ, разработанного для упрощения взаимодействия с текстовыми данными. Используя интуитивный интерфейс чат-бота Lyzr вместе с youtube-transcript-api и FPDF, пользователи могут преобразовывать […] ➡️➡️➡️
Введение в MMaDA Данная статья представляет MMaDA: унифицированную модель диффузии для текстового рассуждения, визуального понимания и генерации изображений. Проблемы многомодальных моделей Модели диффузии, известные своей способностью генерировать высококачественные изображения, сейчас исследуются как основа для работы с различными типами данных. Основная сложность многомодальных моделей заключается в создании систем, способных понимать и генерировать текст и изображения без […] ➡️➡️➡️
Мягкое мышление: новый подход к рассуждениям в больших языковых моделях Исследователи представили концепцию «Мягкое мышление», которая заменяет дискретные токены на непрерывные концептуальные эмбеддинги. Это позволяет моделям рассуждать более гибко и эффективно. Проблемы существующих моделей Современные большие языковые модели (LLMs) ограничены в своих возможностях, так как работают с отдельными токенами. Это ограничивает их способность к выражению […] ➡️➡️➡️
Запуск API Агентов Mistral — Новая Платформа для Создания AI Агента Запуск API Агентов Mistral Mistral представила API Агентов, который предназначен для упрощения разработки AI-агентов, способных выполнять различные задачи, включая запуск Python-кода, генерацию изображений и выполнение генерации с улучшением поиска (RAG). Этот API создает единую среду, в которой большие языковые модели (LLMs) могут взаимодействовать с […] ➡️➡️➡️
Введение Multi-SpatialMLLM от Meta AI Многофункциональные большие языковые модели (MLLM) демонстрируют значительный прогресс в качестве универсальных AI-помощников, способных выполнять различные визуальные задачи. Однако их влияние часто ограничено при использовании в одиночку. Интеграция MLLM в реальные приложения, такие как робототехника и автономные транспортные средства, требует продвинутого пространственного понимания. Проблемы пространственного понимания Современные MLLM имеют недостатки в […] ➡️➡️➡️
Предложение QwenLong-L1: Рамка обучения с подкреплением для долгосрочного контекстного мышления в больших языковых моделях Исследователи Qwen представили QwenLong-L1, новую рамку обучения с подкреплением (RL), которая адаптирует большие модели для задач долгосрочного контекстного мышления. Эта рамка решает проблемы, связанные с обработкой длинных последовательностей, превышающих 100 000 токенов, что необходимо для таких приложений, как многодокументные вопросы и ответы, […] ➡️➡️➡️
Введение в модель Panda Исследователи из Университета Техаса в Остине представили модель Panda (Patched Attention for Nonlinear Dynamics), которая была предварительно обучена на 20,000 хаотических обыкновенных дифференциальных уравнений (ODE), созданных с помощью эволюционного поиска. Эта модель предназначена для решения проблем, связанных с предсказанием динамических систем, таких как динамика жидкостей и активность мозга. Проблемы предсказания динамических […] ➡️➡️➡️
Дифференцируемые MCMC-слои: Новый ИИ-фреймворк для обучения с неточными комбинаторными решателями в нейронных сетях Нейронные сети являются мощными инструментами для решения сложных задач, основанных на данных. Однако они часто сталкиваются с трудностями при принятии дискретных решений в условиях жестких ограничений, таких как маршрутизация транспортных средств или планирование задач. Эти дискретные задачи, распространенные в операционном исследовании, являются […] ➡️➡️➡️
Могут ли большие языковые модели действительно судить с рассуждением? Введение Недавние достижения в области больших языковых моделей (LLMs) привлекли внимание к их возможностям в рассуждении и суждении. Исследователи из Microsoft и Университета Цинхуа представили Модели Награды за Рассуждение (RRMs), которые направлены на улучшение согласования LLMs путем динамического масштабирования вычислительных ресурсов во время оценивания. Роль обучения […] ➡️➡️➡️
Пошаговое руководство по созданию синтетических данных с использованием Synthetic Data Vault (SDV) Данные из реального мира часто представляют собой высокие затраты, неразбериху и ограничения по правилам конфиденциальности. Синтетические данные предлагают решение и уже широко используются в различных приложениях, таких как обучение больших языковых моделей (LLMs) с помощью текста, созданного ИИ, моделирование крайних случаев для систем […] ➡️➡️➡️
Введение NVIDIA представила Llama Nemotron Nano 4B — эффективную открытую модель для рассуждений, оптимизированную для задач Edge AI и научных исследований. С 4 миллиардами параметров она превосходит аналогичные модели с 8 миллиардами параметров, достигая более высокой точности и увеличенной производительности до 50% согласно внутренним тестам. Архитектура модели и процесс обучения Nemotron Nano 4B основана на […] ➡️➡️➡️
NVIDIA AI Introduces AceReason-Nemotron NVIDIA AI представляет AceReason-Nemotron для улучшения математического и программного мышления с помощью обучения с подкреплением Введение Способности к рассуждению являются ключевыми для развития систем ИИ. Появление o1 от OpenAI вызвало значительный интерес к созданию моделей рассуждения с использованием подходов обучения с подкреплением (RL). Несмотря на то, что открытый доступ к DeepSeek-R1 […] ➡️➡️➡️
Введение в NLWeb Многие веб-сайты сталкиваются с трудностями при предоставлении доступных и экономически эффективных способов интеграции интерфейсов на естественном языке. Это чаще всего ограничивает взаимодействие пользователей с контентом сайта через разговорный ИИ. Традиционные решения обычно зависят от централизованных, проприетарных сервисов или требуют значительных технических знаний, что ограничивает масштабируемость и адаптивность. В результате разработчики сталкиваются с […] ➡️➡️➡️
Введение в метод GRIT Данная статья представляет метод GRIT, который обучает многомодальные большие языковые модели (MLLMs) рассуждать с использованием изображений, сочетая текст и визуальное обоснование. Проблема соединения текста и изображений Основная задача MLLMs заключается в объединении визуального контента с логикой языка. Однако многие модели испытывают трудности в эффективном соединении этих областей, что приводит к ограниченной […] ➡️➡️➡️
Пошаговое руководство по созданию настраиваемого многофункционального AI-агента с LangGraph и Claude В этом руководстве мы покажем, как создать мощного многофункционального AI-агента с использованием LangGraph и Claude. Агент будет способен выполнять такие задачи, как математические вычисления, веб-поиск, запросы о погоде, анализ текста и получение информации в реальном времени. Мы обеспечим простоту настройки, даже для начинающих пользователей, […] ➡️➡️➡️