Эффективное дополнение базы знаний для больших языковых моделей Большие языковые модели (LLMs) продемонстрировали сильные способности к рассуждению и знанию, однако часто требуют внешнего дополнения знаний, когда их внутренние представления не содержат конкретных деталей. Одним из методов интеграции новой информации является контролируемая дообучение, однако этот подход неэффективен, так как требует переобучения при каждом введении новых знаний…
Использование SQL баз данных с Python Введение Этот учебник поможет вам освоить использование SQL баз данных с Python, сосредоточив внимание на MySQL как системе управления базами данных. Вы научитесь настраивать свою среду, подключаться к базе данных и выполнять основные операции, такие как создание, чтение, обновление и удаление записей. Предварительные требования Перед началом убедитесь, что у…
Искусственный интеллект: Многоязычное распознавание речи и перевод Введение В области искусственного интеллекта многоязычное распознавание речи и перевод стали важными инструментами для облегчения глобальной коммуникации. Однако создание моделей, которые могут точно транскрибировать и переводить несколько языков в реальном времени, представляет собой значительные вызовы. Проблемы и решения К основным вызовам относятся: Управление разнообразными языковыми нюансами; Поддержание высокой…
Claimify: Новое решение для извлечения заявлений Представляем Claimify Распространение больших языковых моделей (LLMs) значительно изменило мир создания и потребления контента. Однако это также привело к важным вызовам, связанным с точностью и достоверностью фактов. Контент, генерируемый LLM, часто содержит утверждения, которые не проходят должную проверку, что может привести к распространению дезинформации. Поэтому важно точно извлекать утверждения…
Введение В современном мире, насыщенном информацией, быстрый поиск актуальных документов является критически важным. Традиционные системы поиска на основе ключевых слов часто не справляются с задачами понимания семантики. В этом руководстве мы рассмотрим, как создать мощный поисковый движок для документов с использованием: Моделей встраивания Hugging Face для преобразования текста в векторные представления Chroma DB в качестве…
Полное руководство по операциям GitHub Это руководство познакомит вас с основными операциями GitHub: клонированием, форком и слиянием репозиториев. Независимо от того, новичок вы в управлении версиями или хотите улучшить свои навыки работы с GitHub, этот учебник предоставит вам необходимые знания для эффективного сотрудничества в проектах программирования. Понимание репозиториев GitHub Репозитории GitHub служат центральными хранилищами для…
Оптимизация Размышлений LLM с Помощью Латентных Токенов Большие языковые модели (LLM) значительно улучшили свои способности, когда их обучали на структурированных следах размышлений. Это позволяет им решать математические уравнения, делать логические выводы и планировать многоступенчатые задачи. Однако для обработки этих длинных следов размышлений требуются значительные вычислительные ресурсы. Исследователи продолжают искать способы повышения эффективности, сохраняя при этом…
Введение в логистические вызовы Каждый день организации сталкиваются с сложными логистическими задачами, такими как оптимизация маршрутов доставки, управление цепочками поставок и упрощение графиков производства. Эти задачи требуют обработки огромных объемов данных и множества переменных, что делает традиционные методы неэффективными. Потребность в современных инструментах оптимизации Для достижения более высокой эффективности, снижения операционных затрат и повышения удовлетворенности…
Преобразование документов в структурированные данные Преобразование сложных документов в структурированные данные долгое время было значительной проблемой в области компьютерных наук. Традиционные подходы, такие как ансамблевые системы или крупные модели, часто сталкиваются с трудностями, такими как сложность тонкой настройки, проблемы с обобщением и высокие вычислительные затраты. Решение от IBM и Hugging Face Исследователи из IBM и…
Построение системы генерации с поддержкой извлечения (RAG) с использованием FAISS и открытых языковых моделей Система генерации с поддержкой извлечения (RAG) представляет собой мощный подход, который сочетает в себе креативные возможности больших языковых моделей (LLMs) с фактической точностью систем извлечения. Это решение помогает преодолеть одну из основных проблем LLM — галлюцинацию. Практические бизнес-решения В этом руководстве…
Введение в MemQ MemQ — это инновационная структура, которая улучшает процесс ответов на вопросы, основанные на графах знаний (KGQA), отделяя рассуждения от вызовов инструментов. Это позволяет снизить количество ошибок и повысить точность ответов. Проблемы существующих методов KGQA Существующие подходы часто путают использование инструментов с истинным рассуждением, что снижает интерпретируемость и увеличивает риск получения некорректных ответов.…
Решения по использованию ИИ в бизнесе Введение в обучение с подкреплением Обучение с подкреплением (RL) стало ключевым элементом в развитии крупных языковых моделей (LLM), улучшая их способности к рассуждению для выполнения сложных задач. Однако исследовательское сообщество сталкивается с серьезными трудностями в воспроизведении передовых методов RL из-за недостаточной прозрачности ключевых деталей обучения от крупных игроков отрасли.…
Презентация модели Speech-to-Speech Foundation на NVIDIA GTC25 Эксперты компании Gnani.ai представили на конференции NVIDIA GTC25 революционные достижения в области голосового ИИ, сосредоточив внимание на разработке и внедрении моделей Speech-to-Speech Foundation. Этот инновационный подход обещает преодолеть ограничения традиционных каскадных архитектур голосового ИИ, открывая эру бесшовных, многоязычных и эмоционально осознанных голосовых взаимодействий. Ограничения каскадных архитектур Современные голосовые…
Лоуэ́с: Революция в Розничной Торговле с Помощью ИИ Компания Лоуэ́с, ведущий ритейлер товаров для дома с 1,700 магазинами и 300,000 сотрудников, становится пионером в области инноваций на основе искусственного интеллекта (ИИ). В недавнем интервью на Nvidia GTC25, Чанду Наир, старший вице-президент по данным, ИИ и инновациям в Лоуэ́с, представил стратегическое видение компании, подчеркивающее трансформационное влияние…
Современные тренды в машинном переводе с использованием больших моделей рассуждений Машинный перевод (MT) стал важным элементом обработки естественного языка, обеспечивая автоматическую конвертацию текста между языками для поддержки глобальной коммуникации. Нейронный машинный перевод (NMT) изменил эту область, применяя методы глубокого обучения для захвата сложных языковых паттернов и контекстуальных зависимостей. Однако остаются значительные проблемы, такие как трудности…
R1-Onevision: Модель для многомодального рассуждения Введение в многомодальное рассуждение Многомодальное рассуждение — это развивающаяся область, которая объединяет визуальные и текстовые данные для повышения интеллектуальных возможностей машин. Традиционные модели ИИ хорошо обрабатывают текст или изображения, но часто сталкиваются с трудностями при необходимости рассуждать на основе обоих форматов. Проблемы существующих моделей Основная проблема многомодального рассуждения заключается в…
Введение в многомодальное рассуждение Модели визуального языка (VLM) продемонстрировали значительные успехи в задачах, связанных с восприятием, таких как визуальное ответ на вопросы (VQA) и визуальное рассуждение на основе документов. Однако их эффективность в задачах, требующих сложного рассуждения, остается ограниченной из-за нехватки качественных и разнообразных обучающих наборов данных. Проблемы существующих наборов данных Существующие мультимодальные наборы данных…
Введение в неевклидово представление данных Машинное обучение вышло за пределы традиционных евклидовых пространств, исследуя более сложные геометрические структуры. Обучение представлениям в неевклидовых пространствах становится важной областью, которая позволяет более эффективно моделировать иерархические, структурированные и сетевые данные. Проблемы и вызовы Одной из основных проблем является отсутствие единой платформы, которая бы интегрировала различные подходы к обучению представлениям…
Оптическое распознавание символов (OCR) Оптическое распознавание символов (OCR) — это мощная технология, которая преобразует изображения текста в машинно-читаемый контент. С ростом потребности в автоматизации извлечения данных, инструменты OCR стали неотъемлемой частью многих приложений, от цифровки документов до извлечения информации из сканированных изображений. Создание приложения OCR в Google Colab В этом руководстве мы создадим приложение OCR,…
Проблемы и решения в области искусственного интеллекта Искусственные нейронные сети (ИНС) значительно изменили компьютерное зрение, но их «черный ящик» создает проблемы в областях, требующих прозрачности и соблюдения норм. Непрозрачность этих систем затрудняет их использование в критически важных приложениях, где понимание процессов принятия решений имеет первостепенное значение. Потребность в объяснимом искусственном интеллекте Ученые стремятся понять внутренние…
Спроси — обсудим AI-подход к твоей задаче 📈