Itinai.com flat lay of a minimalist ai business toolkit. smal d512725d 5416 4042 96d5 62b63d1987a9 3
Itinai.com flat lay of a minimalist ai business toolkit. smal d512725d 5416 4042 96d5 62b63d1987a9 3

Изучение обучения с подкреплением в LLM с разреженными автоэнкодерами.

 Exploring In-Context Reinforcement Learning in LLMs with Sparse Autoencoders

Исследование контекстного обучения с подкреплением в LLM с помощью разреженных автокодировщиков

Практические решения и ценность

Большие языковые модели (LLM) показали удивительные способности к контекстному обучению в различных областях, включая перевод, функциональное обучение и обучение с подкреплением. Ранее исследователи изучали механизмы контекстного обучения с механистической точки зрения, демонстрируя, что трансформеры могут обнаруживать существующие алгоритмы без явного руководства. Использование разреженных автокодировщиков позволяет анализировать представления, поддерживающие контекстное обучение, и раскрывать внутренние механизмы моделей.

Исследователи изучили способность LLM к обучению графовых структур без вознаграждения, используя концепцию Successor Representation (SR). Результаты показали, что Llama быстро научился предсказывать следующее состояние с высокой точностью и разработал представления, аналогичные SR, захватывая глобальную геометрию графа.

Это исследование демонстрирует, что LLM реализует обучение по временной разнице (TD) для решения проблем обучения с подкреплением в контексте. Использование разреженных автокодировщиков позволяет идентифицировать и управлять ключевыми характеристиками для контекстного обучения, демонстрируя их влияние на поведение и представления LLM.

Полезные ссылки:

ИИ Бизнес-инкубатор itinai.ru будет работать на вас. Получите свой цифровой продукт и готовую модель дохода

ИИ-агенты интеллектуальная автоматизация бизнеса

Готовые ИТ — решения для бизнеса

Новости в сфере искусственного интеллекта