Неожиданные особенности в решающих границах моделей машинного обучения: новое исследование из Университета Калифорнии в Лос-Анджелесе.

 A New Machine Learning Research from UCLA Uncovers Unexpected Irregularities and Non-Smoothness in LLMs’ In-Context Decision Boundaries

“`html

Новое исследование машинного обучения от UCLA выявляет неожиданные нерегулярности и неплавность границ принятия решений в контексте LLMs

Недавние языковые модели, такие как GPT-3+, продемонстрировали значительное улучшение производительности, просто предсказывая следующее слово в последовательности, используя большие наборы данных для обучения и увеличенную емкость модели. Ключевая особенность этих моделей на основе трансформаторов заключается в контекстном обучении, которое позволяет модели учиться задачам, условно связывая серию примеров без явного обучения. Однако механизм работы контекстного обучения до сих пор частично понятен. Исследователи изучали факторы, влияющие на контекстное обучение, и выяснили, что точные примеры не всегда необходимы для эффективности, в то время как структура подсказок, размер модели и порядок примеров значительно влияют на результаты.

Практические решения и ценность

Это исследование исследует три существующих метода контекстного обучения в трансформаторах и больших языковых моделях (LLMs), проводя серию бинарных классификационных задач (BCTs) в различных условиях. Первый метод фокусируется на теоретическом понимании контекстного обучения, стремясь связать его с градиентным спуском (GD). Второй метод – это практическое понимание, которое рассматривает, как контекстное обучение работает в LLMs, учитывая такие факторы, как пространство меток, распределение входного текста и общий формат последовательности. Финальный метод – обучение контекстному обучению. Для активации контекстного обучения используется MetaICL, которая является мета-обучающей структурой для донастройки предварительно обученных LLMs на большом и разнообразном наборе задач.

Исследователи из Департамента компьютерных наук Университета Калифорнии в Лос-Анджелесе (UCLA) представили новую перспективу, рассматривая контекстное обучение в LLMs как уникальный алгоритм машинного обучения. Эта концептуальная рамка позволяет традиционным инструментам машинного обучения анализировать границы принятия решений в бинарных классификационных задачах. Множество ценных идей было получено для производительности и поведения контекстного обучения путем визуализации этих границ принятия решений в линейных и нелинейных условиях. Этот подход исследует обобщающие способности LLMs, предоставляя отдельную перспективу на силу их производительности контекстного обучения.

Эксперименты, проведенные исследователями, в основном сосредоточены на решении следующих вопросов:

  • Как существующие предварительно обученные LLMs проявляют себя в BCTs?
  • Как различные факторы влияют на границы принятия решений этих моделей?
  • Как можно улучшить плавность границ принятия решений?

Границы принятия решений LLMs были изучены для классификационных задач, подталкивая их n контекстными примерами BCTs, с равным количеством примеров для каждого класса. С использованием scikit-learn были созданы три типа наборов данных, представляющих различные формы границ принятия решений, такие как линейные, круглые и лунные. Кроме того, были изучены различные LLMs, включая модели с открытым исходным кодом, такие как Llama2-7B, Llama3-8B, Llama2-13B, Mistral-7B-v0.1 и sheared-Llama-1.3B, чтобы понять их границы принятия решений.

Результаты экспериментов показали, что донастройка LLMs на контекстных примерах не приводит к более плавным границам принятия решений. Например, когда Llama3-8B был донастроен на 128 контекстных примерах обучения, полученные границы принятия решений остались неплавными. Таким образом, для улучшения плавности границ принятия решений LLMs на наборе задач классификации, предварительно обученная модель Llama была донастроена на наборе из 1000 бинарных классификационных задач, сгенерированных из scikit-learn, которые имели линейные, круглые или лунные границы с равными вероятностями.

В заключение, исследовательская группа предложила новый метод понимания контекстного обучения в LLMs, исследуя их границы принятия решений в контексте BCTs. Несмотря на получение высокой точности теста, было обнаружено, что границы принятия решений LLMs часто являются неплавными. Таким образом, через эксперименты были выявлены факторы, влияющие на эти границы принятия решений. Кроме того, были изучены методы донастройки и адаптивной выборки, которые оказались эффективными в улучшении плавности границ. В будущем эти результаты предоставят новые идеи о механике контекстного обучения и предложат пути для исследований и оптимизации.

Проверьте статью. Вся заслуга за это исследование принадлежит исследователям этого проекта. Также не забудьте подписаться на наш Twitter.

Присоединяйтесь к нашему Telegram-каналу и группе в LinkedIn.

Если вам понравилась наша работа, вам понравится наша рассылка.

Не забудьте присоединиться к нашему 45k+ ML SubReddit.

Как использовать искусственный интеллект для развития вашего бизнеса

Если вы хотите, чтобы ваша компания развивалась с помощью искусственного интеллекта (ИИ) и оставалась в числе лидеров, грамотно используйте A New Machine Learning Research from UCLA Uncovers Unexpected Irregularities and Non-Smoothness in LLMs’ In-Context Decision Boundaries.

Проанализируйте, как ИИ может изменить вашу работу. Определите, где возможно применение автоматизации: найдите моменты, когда ваши клиенты могут извлечь выгоду из AI.

Определитесь какие ключевые показатели эффективности (KPI): вы хотите улучшить с помощью ИИ.

Подберите подходящее решение, сейчас очень много вариантов ИИ. Внедряйте ИИ решения постепенно: начните с малого проекта, анализируйте результаты и KPI.

На полученных данных и опыте расширяйте автоматизацию.

Если вам нужны советы по внедрению ИИ, пишите нам на Telegram. Следите за новостями о ИИ в нашем Телеграм-канале t.me/itinainews или в Twitter itinairu45358.

Попробуйте AI Sales Bot. Этот AI ассистент в продажах помогает отвечать на вопросы клиентов, генерировать контент для отдела продаж, снижать нагрузку на первую линию.

Узнайте, как ИИ может изменить ваши процессы с решениями от AI Lab itinai.ru. Будущее уже здесь!

“`

Полезные ссылки: