Itinai.com mockup of branding agency website on laptop. moder 03f172b9 e6d0 45d8 b393 c8a3107c17e2 2
Itinai.com mockup of branding agency website on laptop. moder 03f172b9 e6d0 45d8 b393 c8a3107c17e2 2

Проблема обмана в больших языковых моделях: новый метод искусственного интеллекта.

 Fallacy Failure Attack: A New AI Method for Exploiting Large Language Models’ Inability to Generate Deceptive Reasoning


Ограничения в обработке обманчивого или ложного рассуждения вызывают беспокойство относительно безопасности и надежности LLMs

Практические решения и ценность:

Проблема заключается в том, что LLM, несмотря на их продвинутые возможности, испытывают трудности в намеренном создании обманчивых рассуждений. При запросе на создание ложного контента эти модели часто «утекают» правдивую информацию, что затрудняет предотвращение выдачи точной, но потенциально вредной информации.

Текущие методы защиты LLM включают различные механизмы обороны для блокирования или фильтрации вредоносных запросов. Однако исследователи обнаружили, что эти методы неэффективны в решении проблемы. В ответ на этот вызов, команда исследователей из Университета Иллинойса в Чикаго и MIT-IBM Watson AI Lab представила новую технику — Fallacy Failure Attack (FFA).

FFA позволяет злоумышленникам извлекать правдивую, но вредную информацию из моделей, обходя существующие защитные механизмы. Даже сильные защитные меры могут ограничивать полезность модели в решении сложных задач.

Исследователи призывают к развитию более надежных защит для LLM и подчеркивают важность дальнейших исследований уязвимостей безопасности крупных языковых моделей.


Полезные ссылки:

ИИ Бизнес-инкубатор itinai.ru будет работать на вас. Получите свой цифровой продукт и готовую модель дохода

ИИ-агенты интеллектуальная автоматизация бизнеса

Готовые ИТ — решения для бизнеса

Новости в сфере искусственного интеллекта