“`html
КодексГраф: Искусственный Интеллект, Объединяющий Агентов LLM с Интерфейсами Графовой Базы Данных, Извлеченными из Репозиториев Кода
Большие языковые модели (LLM) показали исключительную производительность на изолированных задачах по коду, таких как HumanEval и MBPP, но сталкиваются с значительными трудностями при работе с целыми репозиториями кода. Ключевая сложность заключается в неспособности LLM управлять вводом с длинным контекстом и выполнить сложное рассуждение по запутанным структурам кода в больших проектах. Эту проблему усугубляет необходимость для моделей понимать и навигировать зависимости и структуры проекта в пределах кодовой базы. Эффективное преодоление этой проблемы необходимо для развития автоматизированной инженерии программного обеспечения, особенно в области обеспечения возможности LLM работать с реальными задачами разработки программного обеспечения, требующими глубокого понимания крупномасштабных репозиториев.
Текущие методы улучшения взаимодействия LLM с репозиториями кода обычно полагаются на подходы, основанные на сходстве или ручные инструменты и API. Однако они имеют свои ограничения, подчеркивая необходимость более продвинутых методов, которые могли бы эффективно поддерживать LLM в навигации и понимании больших репозиториев кода.
КодексГраф представляет собой новаторский подход, который решает ограничения существующих методов Retrieval-Augmented Code Generation (RACG), интегрируя LLM с графовыми интерфейсами базы данных. Этот метод улучшает способность LLM навигировать и извлекать релевантную информацию из крупных репозиториев кода, значительно повышая производительность как в академических, так и практических задачах инженерии программного обеспечения.
Прочитать статью и посетить GitHub можно по ссылке здесь. Весь кредит за это исследование принадлежит его авторам. Также не забудьте подписаться на наш Twitter и присоединиться к нашему Telegram-каналу и группе в LinkedIn.
Не забудьте присоединиться к нашему сообществу из более чем 48 000 человек на ML SubReddit.
Узнайте о предстоящих вебинарах по ИИ здесь.
Arcee AI выпустила DistillKit: Open Source инструмент для моделирования создания эффективных малых языковых моделей высокой производительности. Узнайте больше в статье на сайте MarkTechPost.
“`