Itinai.com ai audit knolling flat lay minimalist business too a5a6c504 7d41 449e a811 53f1d275e547 0
Itinai.com ai audit knolling flat lay minimalist business too a5a6c504 7d41 449e a811 53f1d275e547 0

Выбор моделей вознаграждения и обучение с использованием нескольких моделей вознаграждения.

Легче сразу спросить 💭

AI снижает операционные расходы на 20–40% 📊 за 6 месяцев. А что бы вы сделали с этими деньгами?

Опишите задачу — обсудим, как это можно реализовать у вас.

ИИ автоматизирует 70% рутинных задач 🤖 за 3 месяца. Какие процессы в вашем бизнесе скинуть роботу?
Персонализированные AI-кампании увеличивают клиентскую базу на 30% 📈. Как это работает?
AI-аналитика сокращает ошибки в прогнозах на 50% 📉. Расскажите подробнее!
 LASER: An Adaptive Method for Selecting Reward Models RMs and Iteratively Training LLMs Using Multiple Reward Models RMs

LASER: метод адаптивного выбора моделей вознаграждения и итеративного обучения LLM с использованием нескольких моделей вознаграждения

Основные проблемы в обучении больших языковых моделей (LLMs) и их решение

Одной из основных проблем в обучении больших языковых моделей (LLMs) является выбор правильной модели вознаграждения (RM), которая бы направляла их обучение. Одна модель RM может быть отличной в креативном письме, но терпит неудачу в более логико-ориентированных областях, таких как математическое мышление. Для преодоления этих вызовов важно разрабатывать более адаптивные и точные ИИ-системы способные справляться с разнообразными прикладными задачами.

Метод LASER: решение проблем выбора моделей RM

Исследователи из UNC Chapel Hill предлагают метод LASER (Learning to Adaptively Select Rewards), который рассматривает выбор RM как проблему многоруких бандитов. Вместо одновременной загрузки и запуска нескольких моделей RM, LASER динамически выбирает наиболее подходящую модель RM для каждой задачи или случая во время обучения. Метод использует алгоритм бандитов LinUCB, который адаптирует выбор RM на основе контекста задачи и прошлой производительности. Путем оптимизации выбора RM на уровне экземпляра LASER снижает вычислительные затраты, улучшая эффективность и точность обучения LLM на разнообразном наборе задач, избегая проблем с вознаграждением, наблюдаемых в методах с одной RM.

Метод LASER преуспевает в улучшении эффективности обучения и общей производительности модели, что создает эффективные решения для оптимизации взаимодействия LLM с предпочтениями человека.

Если вам интересно узнать больше о LASER, ознакомьтесь с документом и нашими социальными сетями.

Полезные ссылки:

Новости в сфере искусственного интеллекта